2025年度 入学試験

B日程

数学

解答について

- 1 受験番号はすでに印刷されています。自分の受験番号であることを確認し、出身中学、氏名を記入しなさい。

例えば、1の $\frac{P1}{0}$ の解答が $\frac{21}{43}$ の場合、解答欄に次のようにマークしなさい。

胆	問題番号			角	召	2	\$	Ħ	剿		
IPJ			2	3	4	5	6	7	8	9	0
	ア	1	2	3	4	(5)	6	7	8	9	0
	1	1	2	3	4	5	6	7	8	9	0
	ゥ	1	2	3	4	5	6	7	8	9	0
	エ	1	2	3	4	5	6	7	8	9	0

また, 各問題について正しい解答を選ぶ問題では, その番号を該当する問題 番号の解答欄にマークしなさい。

例えば、2(1)の正解が ④ の場合、解答欄に次のようにマークしなさい。

問題番号				角	件	2	\$	Ħ	Į		
		1	2	3	4	5	6	7	8	9	0
2	(1)	1	2	3	4	(5)	6	7	8	9	0

- 3 解答が分数の場合は、既約分数(それ以上約分できない分数)で、比の場合は、 最も簡単な整数の比で答えなさい。
- 4 もし, まちがってマークした場合には, プラスチック消しゴムで **あとが残らないように** 確実に消しなさい。

京都先端科学大学附属高等学校

1 次の空欄に当てはまる数をマークシート方式解答欄にマークしなさい。

(1)
$$(\sqrt{5}-1)^2(\sqrt{5}+1)^2-(5+2\sqrt{6})(5-2\sqrt{6})$$
 を計算すると, アイ である。

(3) 連立方程式
$$\begin{cases} ax-2y=7\\ x+ay=b \end{cases}$$
 の解が $x=1,\ y=-2$ のとき, $a=$ カ , $b=-$ す である。

(4) 関数 $y=ax^2$ でxの変域が $-2 \le x \le 1$, yの変域が $-12 \le y \le b$ であるとき,

a=- $\boxed{}$, b= $\boxed{}$ である。

(5) 連続する3つの自然数の2乗の和が434で、3つの自然数を小さい順にn-1、n、n+1 とすると、n= コサ である。

2

次の空欄に当てはまる数をマークシート方式解答欄にマークしなさい。

(1) aをbで割ると商が4で余りが2cとなった。

a をb , c を用いて表すと $a = \boxed{ m{\mathcal{P}} } b + \boxed{ m{\mathcal{I}} } c$ となる。

(2) a mLのジュースを10人で分けた。10人のうちb人は120 mLずつジュースをもらい、残りの人は60 mLずつジュースをもらったところc mL余った。ただし,bは9以下の自然数とする。

a をb, c を用いて表すと $a = \boxed{$ ウエ b+c+ オカキ となる。

(3) 5%の食塩水 α gと、b%の食塩水100gを混ぜ合わせると3%の食塩水ができた。

a をb を用いて表すと a=- **クケ** b+ **コサシ** となる。

次の空欄に当てはまる数をマークシート方式解答欄にマークしなさい。

3

ロッカーを縦に4個、横に10個並べる。このロッカーに番号シールを貼ることを考える。

下図のように、左上から縦向きに番号シールを貼っていったとき、左から数えて8列目の上から3番目に貼られる番号は**アイ**である。

1	5				
2	6				
3					
4					

ロッカーを縦に5個、横に10個並べる。このロッカーに下図のように、左上から横向きに番号シールを貼っていったとき、左から数えて7列目の上から5番目に貼られる番号は ウエ である。

1	2	3	4	5	6	7	8	9	10
11	12								

ロッカーを縦に4個、横に10個並べる。このロッカーに左上から縦向きに番号シールを貼っていった場合と横向きに番号シールを貼っていった場合、どちらの場合も番号シールの貼られる位置が変わらない番号は オー、カキー、「クケー、「コサーである。

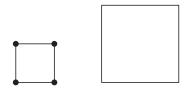
(「カキ」, 「クケ」, 「コサ」は答えの順番は問わない。)

4

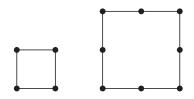
次の空欄に当てはまる数をマークシート方式解答欄にマークしなさい。

1辺が1の正方形とその頂点上に黒点をおいた図を考える。この正方形を基準として、次の「操作」に従って新しい正方形を考え、重ねていく。

「操作」: ① 1つ前の正方形の辺の長さを2倍した正方形をつくる。

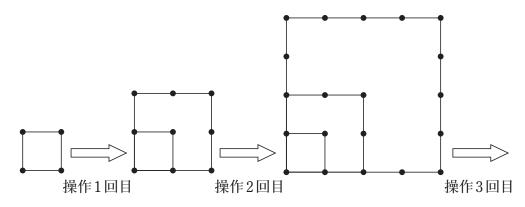


② できた正方形の頂点とその間の辺上に点と点の間隔が1になるように黒点をおく。



③ ②で考えた黒点を持つ正方形を左下の頂点が重なるように、1つ前の正方形に重ねる。

①から③の作業を1回の「操作」とし、この「操作」を繰り返すことによってできる図形について考える。



(1) 「操作」を3回繰り返した後、1番外側の正方形の頂点と辺上にある黒点の数は、**アイ**である。

(2) 「操作」を4回繰り返した後、図形上にあるすべての黒点のうち、1番外側の正方形の頂点と辺上にある黒点を除いた黒点の数は、「ウェ」である。

(3) 「操作」を4回繰り返した後、図形上にあるすべての黒点の数は、「オカ」である。

5 次の空欄に当てはまる数をマークシート方式解答欄にマークしなさい。

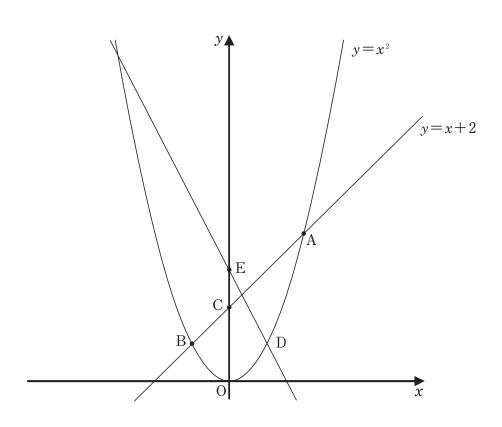
関数 $y=x^2$ …① のグラフと関数 y=x+2…② のグラフの交点を A,Bとする。ただし,点 A の x 座標は正の数,点 B の x 座標は負の数とする。

2点A,Bの座標はそれぞれ,A($m{P}$, $m{I}$),B($m{-}$ $m{D}$, $m{\Sigma}$)である。また,関数②のグラフとy軸との交点をCとすると,点Cの座標はC($m{0}$, $m{J}$)である。ここで, \triangle OACの面積を S_1 とすると, S_1 = $m{D}$ である。

次に関数①のグラフ上でx座標が1の点Dを通り、傾きが-2の直線の式は

$$y = -2x + \boxed{\dagger}$$

であり、この直線とy軸との交点Eの座標はE(0, 2))であるため、 \triangle ODEの面積 S_2 は、 $S_2 = \frac{5}{2}$ である。



さらに、点Dを通る傾きが負である直線を考え、この直線とy軸との交点をFとする。 \triangle ODF の面積 S_3 が $S_3=5$ であるとき、直線DFの式は

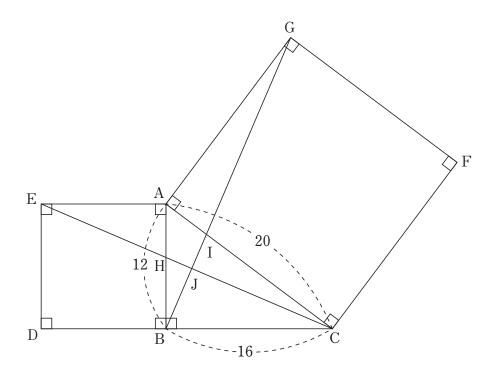
$$y = \forall x + \boxed{\flat x}$$

であり、この直線のグラフと関数①のグラフとの交点で、点Dとは異なる点をGとすると、 $\triangle \text{ODG}\, o \text{ mod}\, S_4 \, \text{td}, \ S_4 = \boxed{ \ \, \textbf{ty} \ \, } \text{ である}.$

6

次の空欄に当てはまる数をマークシート方式解答欄にマークしなさい。

下図のように、AB=12、BC=16、CA=20である直角三角形ABCがあり、線分AB、線分ACを1辺とする正方形AEDB、正方形ACFGをつくる。また、線分ABと線分CEの交点を点H、線分BGと線分ACの交点を点I、線分CEと線分BGの交点を点Jとする。



(1) $\triangle AEC \equiv \triangle ABG$ であることを証明する。

 $\triangle AEC$ と $\triangle ABG$ において、AE = AB = 12、 $AC = AG = \boxed{\mathbf{\mathcal{P}}\mathbf{1}}$ 、

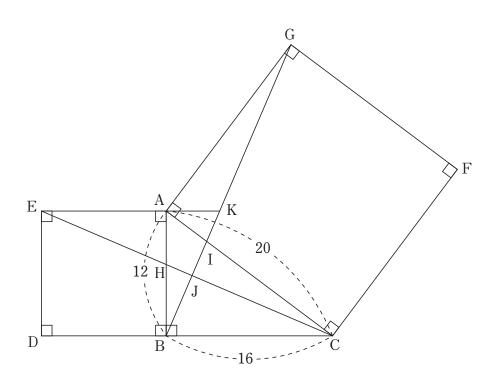
 $\angle EAC = \angle BAG = \angle BAC + \boxed{$ ウェ $}$ ° であり、

2辺とその間の角がそれぞれ等しいので、 $\triangle AEC \equiv \triangle ABG$ となる。

(2) △AECの面積は **オカ** である。また、△AEHと△BCHは相似な図形であり、相似比

は **キ** : **ク** となるので、 △ AEHの面積は **ケコサ** である。

(3) 直線EAと線分BGの交点を点Kとする。 (1)より∠AEH=∠ABK, AE=AB=12, さらに∠EAH=∠BAKより△AEH≡△ABKであり、AK= スセ となる。△EJKと △CJBは相似な図形であるので、EJ: JC= タチ : ツテ となる。



問題は以上です。